Диагностирование гидропривода



Одной из тенденций развития СДМ является широкое использование объемного гидропривода. Однако усложнение гидросхем приводит к увеличению трудоемкости ТО и ТР, а неоправданные разборки элементов гидропривода снижают их ресурс. Диагностирование позволяет значительно сократить время поиска дефекта гидропривода и снизить трудозатраты при его ТО и Р. Существующие методы диагностирования гидропривода по трудоемкости условно можно разделить на пять групп:

статопараметрический метод, наиболее трудоемкий, требующий отвода из гидросистемы потока рабочей жидкости;

методы амплитудно-фазовых и переходных характеристик и термодинамический, требующие установки в гидросистему датчиков, имеющих контакт с рабочей жидкостью;

спектральный анализ и индикация инородных примесей, т.е. методы, требующие отбора проб рабочей жидкости;

акустический, виброакустический, силовой и метод измерения скорости нарастания усилия на исполнительном элементе, т. е. методы, требующие установки датчиков, не имеющих контакта с рабочей жидкостью;

кинематический метод, наименее трудоемкий, не требующий установки специальных датчиков.

Метод амплитудно-фазовых характеристик (метод пульсаций давления) основан на измерении колебаний давления в напорной магистрали насоса в установившемся режиме его работы и предназначен для оценки технического состояния качающих узлов аксиально-поршневых насосов по осциллограмме пульсации давления. Этот метод позволяет определить суммарный износ в кинематической цепи, обеспечивающей возвратно-поступательное движение поршней. Недостатком его является невозможность определения износа элементов, влияющих на внутренние перетечки.

Метод переходных характеристик (волновой метод) основан на анализе диаграмм изменения давления на участках гидросхемы после переходных режимов ее работы. Ударная волна, проходя по участку гидросхемы, несет информацию о всех гидравлических сопротивлениях (золотниках, клапанах, вмятинах, утечках). Сравнив полученную ударную диаграмму с эталонной, можно оценить изменения в гидросистеме. Данный метод обладает высокой информативностью, но сложна расшифровка диаграмм. Кроме того, во время проведения измерений необходимо исключать из схемы узлы, влияющие на гашение пульсаций.

Термодинамический метод позволяет путем измерения перепадов температур на входе и выходе элементов гидросхемы определять их полный КПД. Основывается он на превращении в тепло энергии, теряемой в элементах гидропривода. Метод эффективен в условиях эксплуатации, однако требует высокой точности измерения температуры, наличия сведений о теплофизических свойствах применяемой гидрожидкости либо использования сложных измерительных схем.

Метод спектрального анализа заключается в определении количества и вида продуктов износа элементов гидропривода в рабочей жидкости. Он позволяет обнаруживать износ на его ранней стадии, однако сложно локализовать продукты износа одной детали.

Метод индикации инородных примесей основан на определении количества продуктов износа деталей в гидрожидкости при помощи специальных магнитных пробок, а также количества воды и дизельного топлива посредством несложного химического анализа.

Акустический метод применяется для диагностирования внутренней негерметичности гидроагрегатов. Он основан на измерении в ультразвуковом диапазоне шума рабочей жидкости, перетекающей через поврежденные уплотнения. Предварительная тарировка позволяет определить утечки в гидрораспределителях, клапанах и других элементах гидросхемы. Достоинство - скорость измерений, недостаток - необходимость предварительной тарировки и наличие значительных помех от соседних агрегатов.

Виброакустический метод основан на анализе параметров вибрации объекта диагностирования. Применяется в основном для гидроагрегатов с явно выраженными циклическими рабочими процессами, например для аксиально-поршневых гидронасосов. Основное достоинство - принципиальная возможность получения информации о любом элементе гидропривода без его разборки, недостаток - сложность выделения полезной информации.

Силовой метод основан на определении усилия, развиваемого исполнительным механизмом. Метод широко применяется при оценке общего состояния гидропривода сельскохозяйственных машин в стационарных и полевых условиях. Достоинством его является возможность интегральной оценки состояния всего гидропривода исполнительного механизма, недостатком - невысокая точность.

Метод измерения скорости нарастания усилия на исполнительном элементе является развитием силового метода для определения технического состояния гидросистем сельскохозяйственных машин, в которых в качестве исполнительных элементов используются гидроцилиндры. Для измерения усилия применяются быстросъемные накладные датчики. Достоинством метода является возможность быстрого получения информации для оценки общего состояния гидропривода, однако он не может использоваться для диагностирования гидросхем с гидромотором.

Кинематический метод, являясь наименее трудоемким, определяет общее техническое состояние гидропривода по скорости перемещения исполнительных элементов, нагруженных рабочим оборудованием. Он достаточно прост и не требует применения специального оборудования, однако имеет невысокую точность.

На основе наиболее распространенного статопараметрического метода разработаны переносные и стационарные средства диагностирования гидропривода.

Наиболее простым по конструкции переносным средством диагностирования гидропривода является устройство КИ-5473, предназначенное для проверки гидросистем сельскохозяйственных и дорожно-строительных машин с рабочим давлением до 10 МПа. Оно состоит из дросселя-расходомера, комплекта сменных переходников и шлангов, размещенных в двух футлярах, и служит для проверки давления настройки предохранительных клапанов от 1,0 до 15 МПа и расхода рабочей жидкости в пределах от 10 до 90 л/мин. Дроссель-расходомер КИ-1097-1 состоит из корпуса с входным и выходным штуцерами, рукоятки дросселя с лимбом и манометра. Действие прибора основано на контроле положения лимба дросселя, при котором измеряемый поток рабочей жидкости Q создает давление Р = 10 МПа. Шкала лимба проградуирована в единицах расхода рабочей жидкости с вязкостью (48 ... 80) • 106 м2/с при температуре (50 ± 5) °С.

Рис. Общий вид дросселя-расходомера КИ-1097-1: 1 - входной штуцер; 2- манометр; 3- выходной штуцер; 4- поворотная рукоятка

Рис. Схема дросселя-расходомера (я) и схемы его включения для определения подачи насоса (б), давления настройки клапана (в), внутренних перетечек в гидроцилиндре (г) и утечек в гидрораспредслителе (д)

Одной из последних моделей является гидротестер универсальный ГТП-6, предназначенный для диагностирования гидропривода СДМ при давлении до 40 МПа и расходе 20... 250 л /мин. Кроме больших расходов гидротестер позволяет измерять утечки рабочей жидкости вдиапазоне 0,1... 20 л/мин. Его измерительный блок выполнен на базе микропроцессора, который контролирует также температуру рабочей жидкости и частоту вращения коленчатого вала двигателя. Подключение к гидроприводу производится также по схемам рис. Для сокращения времени подключения в комплект гидротестера входит устройство полнопоточного отбора рабочей жидкости, представляющее собой трехходовой кран, устанавливаемый на выходе насоса между рукавом высокого давления и металлическим трубопроводом. Применение подсоедини-тельного устройства позволяет без переключения гидротестера реализовывать байпасную или Т-схему.

Для реализации акустического метода диагностирования разработан измеритель ультразвуковых колебаний ИКУ-1, предназначенный для безразборного контроля внутренних утечек через неплотности распределительных и запорных элементов гидроприводов, а также поиска неисправностей в дизельной топливной аппаратуре. Он состоит из датчика ультразвуковых колебаний, приставляемого к гидроагрегатам, и измерительного блока, снабженного стрелочным индикатором. После предварительной тарировки по уровню ультразвуковых колебаний можно определять утечки в гидрораспределителях, клапанах и т. д.